Sains Malaysiana 53(5)(2024): 1133-1147

http://doi.org/10.17576/jsm-2024-5305-13

 

Efficient Removal of Pb(II) Ion using TiO2/ZnO/SiO2 Nanocomposite from Aqueous Solutions via Adsorption-Photocatalysis Process

(Penyingkiran Cekap Ion Pb(II) menggunakan Nanokomposit TiO2/ZnO/SiO2 daripada Larutan Akua melalui Proses Penjerapan-Fotokatalisis)

 

DADAN HADIAN1,2, ANITA ALNI3, AEP PATAH4, NURRAHMI HANDAYANI1,5 & MUHAMMAD ALI ZULFIKAR1,*

 

1Analytical Chemistry Research Group, Institut Teknologi Bandung, Indonesia

2Center for Ceramics, Ministry of the Industry Republic of Indonesia, Indonesia

3Organic Chemistry Research Group, Institut Teknologi Bandung, Indonesia

4Inorganic and Physical Research Group, Institut Teknologi Bandung, Indonesia

5Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Indonesia

 

Diserahkan: 14 November 2023/Diterima: 20 Mac 2024

 

Abstract

This research aims to investigate the usage of a TiO2/ZnO/SiO2 (TZS) composite prepared via a 24-h hydrothermal process at 180° C to remove Pb(II) through adsorption-photocatalysis. Pb(II) exposure has known health risks, making this study significant. The research explores the impact of pH, the nanocomposite quantity, and contact time in the process. Adsorption-photocatalysis was carried out in the dark for 60 min, followed by irradiation with a 160-watt mercury lamp. The adsorption process of Pb(II) ion removal adhered to the pseudo-second-order model regarding kinetics, while the adsorption isotherm corresponded to the Freundlich isotherm. Additionally, the assessment of photocatalysis kinetics showed that the removal of Pb(II) ions followed a pseudo-first-order model, resulting in a 99.58% elimination of Pb(II) ions. Post-adsorption-photocatalytic treatment, a yellowish precipitate was observed. The XRD pattern result of the yellowish precipitate confirmed the presence of PbO as the formed Pb phase. The study concludes that the TiO2/ZnO/SiO2 nanocomposite as adsorbent-photocatalyst is a highly effective, efficient, and promising method to remove Pb(II) contamination from aqueous solutions.

 

Keywords: Adsorption-photocatalytic; removal Pb(II) ion; TiO2/ZnO/SiO2 composite

 

Abstrak

Penyelidikan ini bertujuan untuk mengkaji penggunaan nanokomposit TiO2/ZnO/SiO2 (TZS) yang disediakan melalui proses hidrotermal selama 24 jam pada suhu 180 °C untuk menyingkirkan Pb(II) melalui penjerapan-fotokatalisis. Pendedahan Pb(II) diketahui membawa risiko kesihatan, menjadikan kajian ini penting. Penyelidikan ini meneroka impak pH, kuantiti nanokomposit dan masa sentuhan dalam proses tersebut. Penjerapan-fotokatalisis dilakukan dalam gelap selama 60 minit, diikuti oleh penyinaran dengan lampu merkuri 160 watt. Proses penjerapan pengeluaran ion Pb(II) menurut model kinetik pseudo-tertib kedua, manakala isoterma penjerapan sejajar dengan isoterma Freundlich. Tambahan pula, penilaian kinetik fotokatalisis menunjukkan bahawa penyingkiran ion Pb(II) mengikuti model pseudo-tertib pertama, menghasilkan penghapusan ion Pb(II) sebanyak 99.58%. Selepas rawatan penjerapan-fotokatalisis, endapan kuning diperhatikan. Hasil corak XRD bagi endapan kekuningan mengesahkan kehadiran PbO sebagai fasa Pb yang terbentuk. Kajian ini menyimpulkan bahawa penjerap-fotokatalis nanokomposit TiO2/ZnO/SiO2 adalah kaedah yang sangat berkesan, cekap dan berpotensi untuk menyingkirkan pencemaran Pb(II) daripada larutan akua.

 

Kata kunci: Komposit TiO2/ZnO/SiO2; penjerapan-fotokatalitik; penyingkiran ion Pb(II)

RUJUKAN

Al-Ghouti, M.A. & Da’ana, D.A. 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials 393: 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

Alshoaibi, A. & Islam, S. 2021. Thermally stable ZnO doped SiO2–TiO2 nanocomposite based opto-chemical sensor. Materials Chemistry and Physics 267: 124687. https://doi.org/10.1016/j.matchemphys.2021.124687

Armaković, S.J., Savanović, M.M. & Armaković, S. 2023. Titanium dioxide as the most used photocatalyst for water purification: An overview. Catalysts 13(1): 26. https://doi.org/10.3390/catal13010026

Arora, R. 2019. Adsorption of heavy metals-A review. Materials Today: Proceedings 18(7): 4745-4750. https://doi.org/10.1016/j.matpr.2019.07.462

Artioli, Y. 2008. The chemistry of adsorption. Encyclopedia of Ecology 5: 60-65. https://www.sciencedirect.com/science/article/pii/B9780080454054002524

Baeissa, E.S. 2016. Photocatalytic removal of Pb ions from aqueous solution using Fe2O3 doped in G-C3N4 nanocomposite under visible light. Frontiers in Nanoscience and Nanotechnology 2(2): 100-106. https://doi.org/10.15761/fnn.1000116

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R. & Sadeghi, M. 2021. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology 12: 643972. https://doi.org/10.3389/fphar.2021.643972

Baniamerian, H., Teimoori, M. & Saberi, M. 2021. Fe2O3/TiO2/activated carbon nanocomposite with synergistic effect of adsorption and photocatalysis. Chemical Engineering and Technology 44(1): 130-139. https://doi.org/10.1002/ceat.202000403

Bao, S., Yang, W., Wang, Y., Yu, Y. & Sun, Y. 2020. One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from aqueous solution. Journal of Hazardous Materials 381: 120914. https://doi.org/10.1016/j.jhazmat.2019.120914

Drygała, A., Starowicz, Z., Gawlińska-Nęcek, K., Karolus, M., Lipiński, M., Jarka, P., Matysiak, W., Tillová, E., Palček, P. & Tański, T. 2023. Hybrid mesoporous TiO2/ZnO electron transport layer for efficient perovskite solar cell. Molecules 28(15): 5656. https://doi.org/10.3390/molecules28155656

Enculescu, M., Costas, A., Evanghelidis, A. & Enculescu, I. 2021. Fabrication of ZnO and TiO2 nanotubes via flexible electro-spun nanofibers for photocatalytic applications. Nanomaterials 11(5): 1305. https://doi.org/10.3390/nano11051305

Ezeonuegbu, B.A., Machido, D.A., Whong, C.M.Z., Japhet, W.S., Alexiou, A., Elazab, S.T., Qusty, N., Yaro, C.A. & Batiha, G.E.S. 2021. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnology Reports 30: e00614. https://doi.org/10.1016/j.btre.2021.e00614

Fonseca-Cervantes, O.R., Pérez-Larios, A., Arellano, V.H.R., Sulbaran-Rangel, B. & González, C.A.G. 2020. Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium. Processes 8(9): 1032. https://doi.org/10.3390/pr8091032

Ghoniem, M.G., Ben Aissa, M.A., Ali, F.A.M. & Khairy, M. 2022. Efficient and rapid removal of Pb(II) and Cu(II) heavy metals from aqueous solutions by MgO nanorods. Inorganics 10(12): 256. https://doi.org/10.3390/inorganics10120256

Guo, Q., Zhou, C., Ma, Z. & Yang, X. 2019. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Advanced Materials 31(50): 1901997. https://doi.org/10.1002/adma.201901997

Hikmah, N., Agustiningsih, D., Nuryono & Kunarti, E.S. 2022. Preparation of iron-doped SiO2/TiO2 using silica from sugarcane bagasse ash for visible light degradation of congo red. Indonesian Journal of Chemistry 22(2): 402-412. https://doi.org/10.22146/ijc.69501

Huang, R., Lin, Q., Zhong, Q., Zhang, X., Wen, X. & Luo, H. 2020. Removal of Cd(II) and Pb(II) from aqueous solution by modified attapulgite clay. Arabian Journal of Chemistry 13(4): 4994-5008. https://doi.org/10.1016/j.arabjc.2020.01.022

Jimenez-Relinque, E., Lee, S.F., Plaza, L. & Castellote, M. 2022. Synergetic adsorption–Photocatalysis process for water treatment using TiO2 supported on waste stainless steel slag. Environmental Science and Pollution Research 29(26): 39712-39722. https://doi.org/10.1007/s11356-022-18728-8

Kabra, K., Chaudhary, R. & Sawhney, R.L. 2008. Solar photocatalytic removal of Cu(II), Ni(II), Zn(II) and Pb(II): Speciation modeling of metal-citric acid complexes. Journal of Hazardous Materials 155(3): 424-432. https://doi.org/10.1016/j.jhazmat.2007.11.083

Kanakaraju, D., Mohamad Shahdad, N.R., Lim, Y.C. & Pace, A. 2019. Concurrent removal of Cr(III), Cu(II), and Pb(II) ions from water by multifunctional TiO2/Alg/FeNPs beads. Sustainable Chemistry and Pharmacy 14: 100176. https://doi.org/10.1016/j.scp.2019.100176

Karapinar, H.S., Kilicel, F., Ozel, F. & Sarilmaz, A. 2021. Fast and effective removal of Pb(II), Cu(II) and Ni(II) ions from aqueous solutions with TiO2 nanofibers: Synthesis, adsorption-desorption process and kinetic studies. International Journal of Environmental Analytical Chemistry 103(16): 4731-4751. https://doi.org/10.1080/03067319.2021.1931162

Kaur, M., Kumari, S. & Sharma, P. 2020. Removal of Pb (II) from aqueous solution using nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic studies. Biotechnology Reports 25: e00410. https://doi.org/10.1016/j.btre.2019.e00410

Khanna, M., Mathur, A., Dubey, A.K., McLaughlin, J., Moirangthem, I., Wadhwa, S., Singh, D. & Kumar, R. 2020. Rapid removal of lead(II) ions from water using iron oxide-tea waste nanocomposite - A kinetic study. IET Nanobiotechnology 14(4): 275-280. https://doi.org/10.1049/iet-nbt.2019.0312

Mai, H.P., Tanabe, S. & Dao, M.T. 2022. The effect of ZnO addition into TiO2 nano photocatalyst on the degradation of dye compound in aqueous solution under UV-LED irradiation. Research Squarehttps://doi.org/10.21203/rs.3.rs-1784067/v1

Monshi, A., Foroughi, M.R. & Monshi, M.R. 2012. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering 2(3): 154-160. https://doi.org/10.4236/wjnse.2012.23020

Mostafa, N.G., Yunnus, A.F. & Elawwad, A. 2022. Adsorption of Pb(II) from water onto ZnO, TiO2, and Al2O3: Process study, adsorption behaviour, and thermodynamics. Adsorption Science and Technology 2022: 7582756. https://doi.org/10.1155/2022/7582756

Mousa, H.M., Alenezi, J.F., Mohamed, I.M.A., Yasin, A.S., Hashem, A.F.M. & Abdal-Hay, A. 2021. Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment. Journal of Alloys and Compounds 886: 161169. https://doi.org/10.1016/j.jallcom.2021.161169

Murruni, L., Conde, F., Leyva, G. & Litter, M.I. 2008. Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. Applied Catalysis B: Environmental 84(3-4): 563-569. https://doi.org/10.1016/j.apcatb.2008.05.012

Mustapha, S., Shuaib, D.T., Ndamitso, M.M., Etsuyankpa, M.B., Sumaila, A., Mohammed, U.M. & Nasirudeen, M.B. 2019. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Applied Water Science 9: 142. https://doi.org/10.1007/s13201-019-1021-x

Nikolaychuk, P.A. 2018. The revised potential – pH diagram for Pb – H2O system. Ovidius University Annals of Chemistry 29(2): 55-67. https://doi.org/10.2478/auoc-2018-0008

Poursani, A.S., Nilchi, A., Hassani, A., Shariat, S.M. & Nouri, J. 2016. The synthesis of nano TiO2; and its use for removal of lead ions from aqueous solution. Journal of Water Resource and Protection 8(4): 438-448. https://doi.org/10.4236/jwarp.2016.84037

Rilda, Y., Damara, D., Syukri, Putri, Y.E., Refinel & Agustien, A. 2019. Synthesis of ZnO-TiO2/chitosan nanorods by using precipitation methods and studying their structures and optics properties at different precursor molar compositions. IOP Conference Series: Earth and Environmental Science 217: 012015. https://doi.org/10.1088/1755-1315/217/1/012015

Sadr, S., Langroudi, A.E., Nejaei, A., Rabiee, A. & Mansouri, N. 2021. Arsenic and lead removal from water by nano-photocatalytic systems (a review). Anthropogenic Pollution Journal 5(1): 72-80. https://doi.org/10.22034/ap.2021.1924078.1094

Sagadevan, S., Fatimah, I., Egbosiub, T.C., Alshahateet, S.F., Anita Lett, J., Weldegebrieal, G.K., Le, M.V. & Johan, M.R. 2022. Photocatalytic efficiency of titanium dioxide for dyes and heavy metals removal from wastewater. Bulletin of Chemical Reaction Engineering & Catalysis 17(2): 430-450. https://doi.org/10.9767/BCREC.17.2.13948.430-450

Sethy, N.K., Arif, Z., Mishra, P.K. & Kumar, P. 2020. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processing and Synthesis 9(1): 171-181. https://doi.org/10.1515/gps-2020-0018

Shi, Q., Terracciano, A., Zhao, Y., Wei, C., Christodoulatos, C. & Meng, X. 2019. Evaluation of metal oxides and activated carbon for lead removal: Kinetics, isotherms, column tests, and the role of co-existing ions. Science of the Total Environment 648: 176-183. https://doi.org/10.1016/j.scitotenv.2018.08.013

Shirsath, D.S. 2022. Synthesis and application of magnetic nanoadsorbent in removal of toxic metals from aqueous solution. Journal of Water and Environmental Nanotechnology 7(1): 89-100. https://doi.org/10.22090/jwent.2022.01.007

Siddeeg, S.M. 2020. A novel synthesis of TiO2/GO nanocomposite for the uptake of Pb2+ and Cd2+ from wastewater. Materials Research Express 7(2): 025038. https://doi.org/10.1088/2053-1591/ab7407

Song, W., Zhao, J., Xie, X., Liu, W., Liu, S., Chang, H. & Wang, C. 2021. Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: The synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight. RSC Advances 11(25): 15369-15379. https://doi.org/10.1039/d1ra00941a

Tanaka, K., Harada, K. & Murata, S. 1986. Photocatalytic deposition of metal ions onto TiO2 powder. Solar Energy 36(2): 159-161. https://doi.org/10.1016/0038-092X(86)90121-0

Thabede, P.M., Shooto, N.D. & Naidoo, E.B. 2020. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds. South African Journal of Chemical Engineering 33: 39-50. https://doi.org/10.1016/j.sajce.2020.04.002

Tobaldi, D.M., Tucci, A., Škapin, A.S. & Esposito, L. 2010. Effects of SiO2 addition on TiO2 crystal structure and photocatalytic activity. Journal of the European Ceramic Society 30(12): 2481-2490. https://doi.org/10.1016/j.jeurceramsoc.2010.05.014

Verma, M., Tyagi, I., Chandra, R. & Gupta, V.K. 2017. Adsorptive removal of Pb (II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. Journal of Molecular Liquids 225: 936-944. https://doi.org/10.1016/j.molliq.2016.04.045

Wahyuni, E.T., Mochammad, R.S., Mahira, N.S., Lestari, N.D., Syoufian, A. & Abdillah Nasir, T. 2022. Enhancement of TiO2 activity under visible light by doping S element from sulfur core for Pb(II) photo-oxidation. Reaction Kinetics, Mechanisms and Catalysis 135(5): 2783-2796. https://doi.org/10.1007/s11144-022-02268-w

Wahyuni, E., Aprilita, N., Hatimah, H., Wulandari, A. & Mudasir, M. 2015. Removal of toxic metal ions in water by photocatalytic method. American Chemical Science Journal 5(2): 194-201. https://doi.org/10.9734/acsj/2015/13807

Wang, X., Ding, H., Sun, S., Zhang, H., Zhou, R., Li, Y., Liang, Y. & Wang, J. 2021. Preparation of a temperature-sensitive superhydrophobic self-cleaning SiO2-TiO2@PDMS coating with photocatalytic activity. Surface and Coatings Technology 408: 126853. https://doi.org/10.1016/j.surfcoat.2021.126853

Widyastuti, E., Chiu, C.T., Hsu, J.L. & Lee, Y.C. 2023. Photocatalytic antimicrobial and photostability studies of TiO2/ZnO thin films. Arabian Journal of Chemistry 16(8): 105010. https://doi.org/10.1016/j.arabjc.2023.105010

Xiong, C., Wang, W., Tan, F., Luo, F., Chen, J. & Qiao, X. 2015. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. Journal of Hazardous Materials 299: 664-674. https://doi.org/10.1016/j.jhazmat.2015.08.008

Xiong, Z., Lei, Z., Ma, S., Chen, X., Gong, B., Zhao, Y., Zhang, J., Zheng, C. & Wu, J.C.S. 2017. Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Applied Catalysis B: Environmental 219: 412-424. https://doi.org/10.1016/j.apcatb.2017.07.078

Xu, K., Liu, Z., Qi, S., Yin, Z., Deng, S., Zhang, M. & Sun, Z. 2020. Construction of Ag-modified TiO2/ZnO heterojunction nanotree arrays with superior photocatalytic and photoelectrochemical properties. RSC Advances 10(57): 34702-34711. https://doi.org/10.1039/d0ra06596j

Yang, X., Guo, N., Yu, Y., Li, H., Xia, H. & Yu, H. 2020. Synthesis of magnetic graphene oxide-titanate composites for efficient removal of Pb(II) from wastewater: Performance and mechanism. Journal of Environmental Management 256: 109943. https://doi.org/10.1016/j.jenvman.2019.109943

Yang, Z.P. & Zhang, C.J. 2010. Kinetics of photocatalytic reduction of Pb(II) on nanocrystalline TiO2 coatings: A quartz crystal microbalance study. Thin Solid Films 518(21): 6006-6009. https://doi.org/10.1016/j.tsf.2010.06.041

You, S., Hu, Y., Liu, X. & Wei, C. 2018. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light. Applied Catalysis B: Environmental 232: 288-298. https://doi.org/10.1016/j.apcatb.2018.03.025

Zhang, Y., Song, X., Zhang, P., Gao, H., Ou, C. & Kong, X. 2020. Production of activated carbons from four wastes via one-step activation and their applications in Pb2+ adsorption: Insight of ash content. Chemosphere 245: 125587. https://doi.org/10.1016/j.chemosphere.2019.125587

Zhao, X., Jia, Q., Song, N., Zhou, W. & Li, Y. 2010. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics, and isotherms. Journal of Chemical and Engineering Data 55(10): 4428-4433. https://doi.org/10.1021/je100586r

Zhou, K., Ding, Y., Zhang, L., Wu, H. & Guo, J. 2020. Synthesis of mesoporous ZnO/TiO2-SiO2 composite material and its application in photocatalytic adsorption desulfurization without the addition of an extra oxidant. Dalton Transactions 49(5): 1600-1612. https://doi.org/10.1039/c9dt04454j

Zulfikar, M.A., Chandra, A.D., Rusnadi, Setiyanto, H., Handayani, N. & Wahyuningrum, D. 2020. TiO2/ZnO nanocomposite photocatalyst: Synthesis, characterization and their application for degradation of humic acid from aqueous solution. Songklanakarin Journal of Science and Technology 42(2): 439-446. https://doi.org/10.14456/sjst-psu.2020.57

 

*Pengarang untuk surat-menyurat: email: zulfikar@chem.itb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya